CIMS論文的天地

 

Characterization of enhanced interfacial bonding between epoxy and plasma functionalized carbon nanotube films

注意:本論文已在Composites Science and Technology 145 (2017) 114-121.發表
使用者請注明論文出處

Xiaohua Liu a, b, Fujun Xu a, b, *, Kun Zhang a, b, Baochun Wei a, Zhiqiang Gao c,
Yiping Qiu a, b, d
a Key Laboratory of Textile Science & Technology, Ministry of Education (Donghua University), Shanghai 201620, PR China
b College of Textiles, Donghua University, Shanghai 201620, PR China
c College of Textile and Clothing, Dezhou University, Dezhou 253023, PR China
d College of Textiles and Apparels, Xinjiang University, Urumqi, Xinjiang Uyghur Autonomous Region 830046, PR China


Abstract:
The interfacial bonding between carbon nanotube (CNT) films and epoxy is usually fairly weak for high quality composites and difficult to be measured experimentally. In this study, the interfacial bonding strength between a CNT film and epoxy is measured using a peeling test. The CNT/epoxy interfacial bonding strength is altered by surface functionalization of the CNT film using atmospheric pressure helium/oxygen plasma. Furthermore, composites with the control and the modified CNT film impregnated in epoxy are manufactured, and their mechanical properties including peeling strengths and tensile strengths are improved remarkably due to enhanced CNT/epoxy bonding after plasma functionalization. The peeling strength between the CNT film and epoxy is increased by 156.6% and so is the fracture energy. The tensile strength of the functionalized CNT film/epoxy composites is 74.4% higher than that with original CNT film. The effect of the treatment time (0.1, 0.2 and 0.3s) is assessed by surface chemical and physical analyses, showing an improvement in the amount of oxygen-containing functional groups on CNT surface, and better dispersion of the CNTs in ethanol with increased treatment time. This benefits the wetting and infiltration into CNTs by epoxy to obtain a stronger interfacial bonding.
Keywords:Carbon nanotubes;Polymers;Interfacial strength;Plasma;Nano composites

1瀏覽PDF格式全文需要使用軟件--Abode Acrobat(由于軟件較大并常見,我站不提供下載)

2、下載論文全文請點擊鼠標右鍵“另存為”或使用斷點續傳軟件下載(3089KB)


本站收錄的本文作者的其他論文:

1、 Tensile and interfacial properties of polyacrylonitrile-based carbon fiber after different cryogenic treated condition
2、X-ray 3D microscopy analysis of fracture mechanisms for 3D orthogonal woven E-glass/epoxy composites with drilled and moulded-in holes
3、Modification of tensile, wear and interfacial properties of Kevlar fibers under cryogenic treatment
4、Flexible strain sensor based on aerogel-spun carbon nanotube yarn with a core-sheath structure

 更多相關論文請點擊本站的<<<站內全文搜索>>>查找

歡迎您參加討論,發表您對此論文及其研究領域的看法!
(請在發言時在標題中使用所點評的論文的題目或研究方向,這樣方便大家瀏覽!)

返回首頁 | CIMS論文 | 并行工程 | 虛擬制造 | 敏捷制造 | 其他論文 | 項目開發 | 學術資源 | 站內全文搜索 | 免費論文網站大全 |

line.gif (4535 字節)

為了更好的為大家服務,歡迎您參加本站的投票調查

>>>>參加更多投票調查請點擊!

本站永久域名:http://www.sqvswk.live歡迎訪問

注意:本站內容未經書面允許不得轉載

All rights reserved, all contents copyright 2000-2019
本站自2000年3月總網頁訪問量為
pk10开奖记录直播