CIMS論文的天地

 

Initiation Effect of Local Heating in Hydro-Thermal Cracking of Resids

注意:本論文已在《Energy & Fuels 》14 (6), pp.1331. 發表
使用者請注明論文出處

Jie Chang, Noritatsu Tsubaki* and Kaoru Fujimoto
Department of Applied Chemistry, School of Engineering, The University of Tokyo,

Masao Yoshimoto Petroleum Energy Center of Japan, KSP R&D Build. D-12-1237, 3-2-1, Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan 

    The upgrading of heavy oils is attracting growing interest as a means of producing premium quality transportation fuels and other middle distillate products. Hydro-thermal cracking is one of the promising processes to obtain maximum middle distillate (kerosene + gas oil) from residual oils. This process and its reaction mechanism have been described elsewhere.1,2 Hydro-thermal cracking of resid, which is the combination of thermal cracking and catalytic hydrogenation, is composed of the following elementary steps: (1) formation of free radicals proceeding via cleavage of C-C or C-X (heteroatom) bond;3,4 (2) production of middle distillate proceeding via β-scission of free radicals;5 (3) termination of free radical reactions and saturation of C=C bonds proceeding via catalytic hydrogenation.
     High reaction temperature can simply accelerate the conversion of resid, but the selectivities of gaseous hydrocarbons and coke will be increased tremendously. We have demonstrated that adding some initiators, such as element sulfur and di- tert-butyl-peroxide, which might produce free radicals even at lower temperature, promoted the conversion of resids and increased the yield of distillate.2,6 This paper presents our results on another initiation method, local heating by inside filament. The in situ measurement of free radical concentration during hydro-thermal cracking of Kuwait AR was carried out by ESR and reported elsewhere.7 The in situ spin concentration (at g = 2.0035, which shows the signal of hydrocarbon free radical) was detected by using a quartz tube containing Kuwait AR at 2.0 MPa of hydrogen pressure and heating it at 5 K/min. The results showed that the spin concentration of free radicals increased with the increasing temperature probably due to the cleavage of C-C and C-S bond and leveled off at about 480 K, then it slightly decreased, and again increased very quickly at above 680 K. According to this trend, an inside filament was employed to realize higher-temperature zone at some limited space inside the reactor to initiate the formation of free radicals at lower reaction temperature. The experiment results proved that local heating effectively promoted the conversion of Canadian oil sand bitumen and Arabian VR.


1瀏覽PDF格式全文需要使用軟件--Abode Acrobat(由于軟件較大并常見,我站不提供下載)

2、下載論文全文請點擊(23KB)

 


本站收錄的本文作者的其他論文:

1、Effect of Addition of K to Ni/SiO2 and Ni/Al2O3 Catalysts on Hydrothermal Cracking of Bitumen

2、Hydrothermal cracking of Residual Oil

3、The Promotional Effect of Initiators in Hydro-thermal Cracking of Resids

4、生物質廢棄物制氫技術

5、Enhancement effect of free radical initiator on hydro-thermal cracking of heavy oil and model compound

 更多相關論文請點擊本站的<<<站內全文搜索>>>查找

   

歡迎您參加討論,發表您對此論文及其研究領域的看法!
(請在發言時在標題中使用所點評的論文的題目或研究方向,這樣方便大家瀏覽!)

返回首頁 | CIMS論文 | 并行工程 | 虛擬制造 | 敏捷制造 | 其他論文 | 項目開發 | 學術資源 | 站內全文搜索 | 免費論文網站大全 |

line.gif (4535 字節)

為了更好的為大家服務,歡迎您參加本站的投票調查

>>>>參加更多投票調查請點擊!

本站永久域名:http://www.sqvswk.live歡迎訪問

注意:本站內容未經書面允許不得轉載

All rights reserved, all contents copyright 2000-2019
本站自2000年3月總網頁訪問量為
pk10开奖记录直播